Host-Guest Complexation. 29. Expanded Hemispherands ${ }^{1}$

Donald J. Cram,* Mark deGrandpre, Carolyn B. Knobler, and Kenneth N. Trueblood
Contribution from the Department of Chemistry of the University of California at Los Angeles, Los Angeles, California 90024. Received October 17, 1983

Abstract

Four new hemispherands and one new open-chain analogue were synthesized, one crystal structure was determined, and the five hosts were examined for their differential binding properties toward alkali metal, ammonium, and alkylammonium ions. Four of the hosts are composed of six anisyl units attached to one another, and at their ends through their 2,6 -positions. This sequence is symbolized by $(\mathrm{A})_{6}$. The ligand systems are completed by attachment of $\mathrm{CH}_{2} \mathrm{OH},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SO}_{2}$, or $\left(\mathrm{CH}_{2}\right)_{2}$ groups to the ends of the $(\mathrm{A})_{6}$ unit. In the fifth system, four like-substituted anisyl groups $(\mathrm{A})_{4}$ were incorporated into a ring by attaching at its ends the unit $\left(\mathrm{BOCH}_{2}\right)_{2} \mathrm{~B}$, in which B is 1,2 -disubstituted benzene. The hosts examined possessed the structures $\left(\mathrm{A}_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}(5),(\mathrm{A})_{6}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}(\mathbf{6}), \mathrm{A}_{6}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SO}_{2}(7), \mathrm{A}_{6}\left(\mathrm{CH}_{2}\right)_{2}(8)\right.$, and $\mathrm{A}_{4}\left(\mathrm{BOCH}_{2}\right)_{2} \mathrm{~B}$ (9). The crystal structure of $(\mathrm{A})_{6}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}(6)$ was determined. The molecule is chiral, contains an approximate C_{2} axis, and has six oxygens which possess a roughly octahedral arrangement. Of the six attached methyl groups, the two at the ends of the sexiaryl chain turn inward to fill the cavity defined by the six oxygens and the other four are oriented a way from the cavity in an alternating up-down-up-down arrangement. The unshared electron pairs of the sulfur and its two closest neighboring oxygens turn outward, whereas those of the other oxygens are oriented inward and are preorganized for binding. The binding free energies ($-\Delta G^{\circ}$) in CDCl_{3} saturated with $\mathrm{D}_{2} \mathrm{O}$ were determined by the extraction technique at $25^{\circ} \mathrm{C}$ for $5-9$ binding the picrate salts of Li^{+}, $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}, \mathrm{NH}_{4}^{+}, \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$, and t - $\mathrm{BuNH}_{3}{ }^{+}$. The patterns of $-\Delta G^{\circ}$ values (kcal mol ${ }^{-1}$) varied with ring size. For open-chain compound $\mathrm{A}_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}(5)$, peak binding was reached with Cs^{+}at $9.1 \mathrm{kcal} \mathrm{mol}^{-1}$. The $\mathrm{CH}_{2} \mathrm{OH}$ ends of the sexiphenyl chain probably hydrogen bond one another to close a ring with seven binding oxygens. The 21 -membered ring hosts $(\mathrm{A})_{6}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}$ (6) and $(\mathrm{A})_{6}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SO}_{2}$ (7) bind very similarly, showing peak binding for K^{+}at 10.1 and $10.2 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. The binding of the 20 -membered ring, (A) $\left(\mathrm{CH}_{2}\right)_{2}(8)$, peaked with Na^{+}and K^{+}with values of 10.1 and $10.2 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. The 24 -membered ring, $(\mathrm{A})_{4}\left(\mathrm{BOCH}_{2}\right)_{2} \mathbf{B}(9)$, was such a poor complexing agent as to be off scale $\left(<6 \mathrm{kcal} \mathrm{mol}{ }^{-1}\right)$ for all ions but Rb^{+}and $\mathrm{Cs}^{+}\left(5.8 \mathrm{kcal} \mathrm{mol}^{-1}\right)$. These results are interpreted in terms of the principles of complementarity and preorganization.

Spherands based on the 2,6-disubstituted-4-methylanisyl (A^{\prime}) unit (e.g., $\left(\mathrm{A}^{\prime}\right)_{6}(1)$) are unique hosts in the sense that they not only have preorganized cavities lined with 24 unshared electrons but these electrons are located at an interface between the vacuum of the cavity and their hydrocarbon support structure composed of six methyl and six aryl groups. Thus the activity of these electrons should be between what they would be in a vacuum and in a hydrocarbon medium. As a consequence, $\left(\mathrm{A}^{\prime}\right)_{6}(1)$ binds exclusively lithium and sodium picrates in CDCl_{3} saturated with $\mathrm{D}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ with $-\Delta G^{\circ}>23$ and $19.3 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. In contrast, the open-chain analogue $\mathrm{H}\left(\mathrm{A}^{\prime}\right)_{6} \mathrm{H}(2)$ binds the same ions with $<6 \mathrm{kcal} \mathrm{mol}{ }^{-1}$. Thus $\left(\mathrm{A}^{\prime}\right)_{6}$ represents an extreme exa mple of the application of the principle of preorganization to host design and the importance of this principle to selectivity and binding free energies. ${ }^{2}$

Hemispherands have been defined as hosts, at least half of whose cavities are preorganized during synthesis, but some parts of which must undergo conformational reorganization during the complexing act. ${ }^{3}$ Anisole hemispherands $\left(\mathrm{A}^{\prime}\right)_{3}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right)_{3}(3)^{4}$ and $(\mathrm{A})_{4}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right)_{2}(4)^{5}$ are both 18 -membered ring hosts which show peak binding with Na^{+}at the $-\Delta G^{\circ}=12.2$ and 13.5 $\mathrm{kcal} \mathrm{mol}^{-1}$ levels, respectively. In the search for compounds more than half self-organizing (during synthesis) but which show peak binding with the ions larger than Na^{+}, we designed with the help of CPK molecular models expanded hemispherands $6-8$ whose cavities are complementary to the larger ions and whose four central anisyl units appear in CPK molecular models to be selforganizing. Open-chain relative 5 in models appears capable of completing its ring system by hydrogen bonding between the terminal hydroxymethylene group and was included in the study because it is a synthetic intermediate and one unlike any previously
(1) We thank the Division of Basic Sciences of the Deparment of Energy, Contract AT(04-3), for support of all the research reported here except that dealing with the crystal structure 24. That work was supported by NSF Grant GP80-22526.
(2) Cram, D. J.; Lein, G. M.; Kaneda, T.: Helgeson, R. C.; Knobler, C. B.; Maverick, E.; Trueblood, K. N. J. Am. Chem. Soc. 1981, 103, 6228-6232.
(3) Cram, D. J.; Trueblood, K. N. "Topics in Current Chemistry"; Springer-Verlag: Berlin, 1981; pp 43-106.
(4) (a) Koenig, K. E.; Lein, G. M.; Stuckler, P.; Kaneda, T.; Cram, D. J. J. Am. Chem. Soc. 1979, 101, 3553-3566. (b) Cram, D. J.; Dicker, I. B.; Lein, G. M.; Knobler, C. B.; Trueblood, K. N. Ibid. 1982, 104, 6827-6828.
(5) Artz, S. I.; Cram, D. J. J. Am. Chem. Soc. 1984, 106, 2160-2171.
examined by us. The larger cycle 9 was prepared to see how far self-organization could be pushed as the cavity expands. For convenience, the hosts will be denoted with line formulas in which A stands for the 2,6-disubstituted-anisyl unit, A^{\prime} for the 2,6 -di-substituted-4-methylanisyl unit, and B for the 1,2-disubstitutedbenzene unit.

Results

Syntheses. Diol (A) ${ }_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$ (5) was prepared from 2,2'-dimethoxy- $1,1^{\prime}$-biphenyl as the initial starting material. This compound was dimetalated with BuLi , and the organometallic produced was treated with iodine to give $3,3^{\prime}$-diiodo- $2,2^{\prime}$-di-methoxy-1, 1^{\prime}-biphenyl ($\mathbf{1 0}, 46 \%$). This compound was crosscoupled ${ }^{6}$ with two moles of dibenzofuranylphenylmagnesium bromide (11) in the presence of $\mathrm{Ni}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2}$ in ether to produce sexiaryl compound 12 (75\%). Dimetalation of 12 and substitution of the organometallic with ethyl chloroformate gave diester 13 (54%). When fused in $\mathrm{NaOH}-\mathrm{KOH}$ at $300^{\circ} \mathrm{C}, 13$ underwent ester hydrolysis and its two furan rings opened to give a sexiphenolic diacid. This compound without characterization was octamethylated with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{4}-\mathrm{K}_{2} \mathrm{CO}_{3}$ to yield diester 14 (88\% overall), reduction of which with LiAlH_{4} produced diol $5(88 \%)$. Chlorination of 5 with N-chlorosuccinimide-triphenylphosphine ${ }^{7}$ gave dichloride 15. This compound was ring closed with $\mathrm{Na}-$ $\mathrm{H}-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{O}-\mathrm{CH}_{3} \mathrm{CSNH}_{2}$ under high dilution conditions to produce macroring $6(75 \%)$. Use of $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{EtOH}-\mathrm{KOH}-$ $\mathrm{CH}_{3} \mathrm{CSNH}_{2}{ }^{8}$ or $\mathrm{C}_{6} \mathrm{H}_{6}-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{O}-t$ - $\mathrm{BuOK}-\mathrm{CH}_{3} \mathrm{CSNH}_{2}$ in this ring closure gave 11 and 15% yields, respectively. Oxidation of sulfide 6 with m-chloroperbenzoic acid gave sulfone 7 (89%). Photoextrusion' of SO_{2} from 7 in $\mathrm{C}_{6} \mathrm{H}_{6}$ produced host 8 (75%).

The synthesis of macrocycle 9 involved trisphenol 16 as the starting material, ${ }^{\text {4a }}$ two of whose hydroxyl groups were protected by ketalization ${ }^{10}$ to give the 7 -membered cycle 17 (95%). Molecular models indicate that formation of the alternative ketal involving the two terminal hydroxyl groups would produce a highly

[^0]
Chart I

1, $\left(A^{\prime}\right)_{6}$

2. $\mathrm{H}\left(\mathrm{A}^{\prime}\right)_{6} \mathrm{H}$

7. $(\mathrm{A})_{6}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SO}_{2}$

4, $(\mathrm{A})_{4}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right)_{2}$
$\underset{\sim}{3},\left(\mathrm{~A}^{\prime}\right)_{3}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right)_{3}$

$\underset{\sim}{8}(\mathrm{~A})_{6}\left(\mathrm{CH}_{2}\right)_{2}$

$\underset{\sim}{\text { g. }}(\mathrm{A})_{4}\left(\mathrm{BOCH}_{2}\right)_{2} \mathrm{~B}$

Scheme I

strained, 10 -membered ring. The remaining hydroxyl group of 17 was benzylated to give $18(100 \%)$. The ketal function was hydrolyzed to free the two hydroxyl groups to give 19 (97%), which was brominated with 2,4,4,6-tetrabromocyclohexa-2,5-dienone ${ }^{11}$ to yield 20 (93%). Other more acidic or basic brominating agents

[^1]15
gave bad mixtures. The bisphenol was methylated with $\mathrm{Me}_{2} \mathrm{SO}_{4}-\mathrm{NaOH}$ to produce 21. This compound was dilithiated with BuLi , and the resulting organometallic was oxidatively coupled with $\mathrm{Fe}(\mathrm{acac})_{3}$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ to give $22(51 \%)$. ${ }^{12}$ The benzyl protecting groups of $\mathbf{2 1}$ were removed with $\mathrm{H}_{2}-\mathrm{Pd}$ to yield sexiaryl
(12) Cram, D. J.; Kaneda, T.; Helgeson, R. C.; Lein, G. M. J. Am. Chem. Soc. 1979, 101, 6752-6754.

Table I. Association Constants (K_{a}) and Binding liree Energies $\left(-\Delta G^{\circ}\right)$ of Hosts for Picrate Salt Guests at $25^{\circ} \mathrm{C}$ in CDCl_{3} Saturated with $\mathrm{D}_{2} \mathrm{O}$

host structure	guest cation	$K_{\mathrm{a}}, \mathrm{M}^{-1}$	$\begin{gathered} -\Delta G^{\circ} \\ \mathrm{kcal} \mathrm{~mol}^{-1} \end{gathered}$
$(\mathrm{A})_{6}\left(\mathrm{CH}_{2}\right)_{2}(8)$	Li^{+}	1.3×10^{4}	5.6
	Na^{+}	2.5×10^{7}	10.1
	K^{+}	3.0×10^{7}	10.2
	Rb ${ }^{+}$	4.4×10^{5}	7.7
	Cs ${ }^{+}$	1.1×10^{4}	5.5
	NH_{4}^{+}	9.6×10^{4}	6.8
	$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$	5.4×10^{3}	5.1
	$t-\mathrm{BuNH}_{3}^{+}$	2.2×10^{2}	3.2
$(\mathrm{A})_{6}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}(6)$	Li^{+}	$<2.5 \times 10^{4}$	<6
	Na^{+}	7.2×10^{5}	8.0
	K^{+}	2.5×10^{7}	10.1
	Rb^{+}	5.5×10^{6}	9.2
	Cs ${ }^{+}$	2.2×10^{5}	7.3
	NH_{4}^{+}	1.2×10^{6}	8.3
	$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$	3.5×10^{4}	6.2
	$t-\mathrm{BuNH}_{3}^{+}$	9.5×10^{1}	2.7
$(\mathrm{A})_{6}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SO}_{2}(7)$	Li^{+}	1.3×10^{4}	5.6
	Na^{+}	2.4×10^{6}	8.7
	K^{+}	3.0×10^{7}	10.2
	Rb^{+}	1.4×10^{6}	8.4
	Cs^{+}	3.5×10^{4}	6.2
	$\mathrm{NH}_{4}{ }^{+}$	3.1×10^{5}	7.5
	$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$	1.1×10^{4}	5.5
	$t-\mathrm{BuNH}_{3}^{+}$	9.5×10^{1}	2.7
$(\mathrm{A})_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}(5)$	Li^{+}	$<2.5 \times 10^{4}$	<6
	$\mathrm{Na}{ }^{+}$	3.5×10^{4}	6.2
	K^{+}	4.4×10^{5}	7.7
	Rb^{+}	2.0×10^{6}	8.6
	Cs^{+}	4.6×10^{6}	9.1
	NH_{4}^{+}	3.1×10^{5}	7.5
	$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$	2.1×10^{4}	5.9
	$t-\mathrm{BuNH}_{3}^{+}$	4.3×10^{2}	3.6
$(\mathrm{A})_{4}\left(\mathrm{BOCH}_{2}\right)_{2} \mathrm{~B}(9)$	Li^{+}	$<2.5 \times 10^{4}$	<6
	Na^{+}	$<2.5 \times 10^{4}$	<6
	K^{+}	$<2.5 \times 10^{4}$	<6
	Rb^{+}	1.8×10^{4}	5.8
	Cs ${ }^{+}$	1.8×10^{4}	5.8
	NH_{4}^{+}	1.7×10^{3}	4.4
	$\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}$	$<2.5 \times 10^{4}$	<6
	$t-\mathrm{BuNH}_{3}^{+}$	$<2.5 \times 10^{4}$	<6

compound 23 (97%), whose internal aryls are anisyl and whose terminal aryls are phenolic. A mixture of this compound with o-xylyl dibromide when added under high dilution conditions to $\mathrm{NaH}-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{O}$ gave the desired macrocycle 9 (20\%).

Free Energies of Complexation. The association constants (K_{a}) and free energies of association $\left(-\Delta G^{\circ}\right)$ of the open-chain system $(\mathrm{A})_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}(5)$ and macrocycles $(\mathrm{A})_{6}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}(6),(\mathrm{A})_{6}(\mathrm{C}$ $\left.\mathrm{H}_{2}\right)_{2} \mathrm{SO}_{2}(7),(\mathrm{A})_{6}\left(\mathrm{CH}_{2}\right)_{2}(8)$, and $\mathrm{A}_{4}\left(\mathrm{BOCH}_{2}\right)_{2} \mathrm{~B}(9)$ were determined by the picrate extraction method. ${ }^{13}$ Solutions of Li^{+}, $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}, \mathrm{NH}_{4}{ }^{+}, \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$, and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CNH}_{3}{ }^{+}$picrate in $\mathrm{D}_{2} \mathrm{O}$ were extracted with CDCl_{3} in the absence and presence of host. The hosts and their complexes are essentially insoluble in the $\mathrm{D}_{2} \mathrm{O}$ layer. The K_{a} and $-\Delta G^{\circ}$ values at $25^{\circ} \mathrm{C}$ in CDCl_{3} saturated with $\mathrm{D}_{2} \mathrm{O}$ were calculated from the results and the use of the equation $\Delta G^{\circ}=-R T \ln K_{\mathrm{a}}$. Table I reports the values obtained, which are the average of two determinations. The $-\Delta G^{\circ}$ values have a precision ranging from ± 1.4 to $\pm 3.1 \% .^{13}$

Discussion

Crystal Structure of $(\mathbf{A})_{6}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}(6)$. The results of the crystal structure determination for host $(\mathrm{A})_{6}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}(6)$ are indicated by formula 24. ${ }^{14}$ The molecule is chiral and contains an ap-

[^2]

24, $\ln _{6}{ }_{6}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}$
proximate C_{2} axis which passes through the S atom and the center of the $(\mathrm{A})_{3}-(\mathrm{A})_{3}$ bond. Each of the six oxygen atoms occupies a position on the side of the best plane of the macrocycle opposite to that of its two nearest oxygens. The methyl groups of the four anisyl units bonded only to other anisole units (inner anisoles) are oriented away from the cavity, and the unshared electron pairs of their attached oxygens are in orbitals that converge on the cavity. The methyl groups of the two anisole units bonded to CH_{2} groups (outer anisoles) are oriented into the cavity, and the unshared electron pairs of their attached oxygens are in orbitals that diverge from the cavity. These two methyl groups essentially fill the cavity and thus 6 is not a spherand but a hemispherand since at least half of the cavity is enforced by the self-organizing up-down-up-down arrangement of the methoxyl groups of the four internal anisole units. For complexation to occur between 6 and any of the alkali metal ions, 180° rotations must occur around the $\mathrm{Ar}-\mathrm{OCH}_{3}$ bonds of the outer anisole units. Such a conformational reorganization generates a cavity in CPK molecular models of $\sim 2.7 \AA$ minimum diameter, which is complementary to the diameter of K^{+}($2.7 \AA$). In CPK molecular models, other combinations of two methyl groups in $\mathbf{6}$ can turn inward; however, more strain is generated when either of them is part of an anisyl flanked by two other anisyls than when the anisyl is at the end of the sexianisyl chain. The same thing is true in models of $(\mathrm{A})_{6}\left(\mathrm{CH}_{2}\right)_{2},(\mathrm{~A})_{6}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SO}_{2}$, and $(\mathrm{A})_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$ (the ends of the last compound probably are hydrogen bonded to form a cycle).

Correlation of Structure with Binding. Host $(\mathrm{A})_{6}\left(\mathrm{CH}_{2}\right)_{2}(\mathbf{8})$ possesses a 20 -membered ring whose methoxyl oxygens can assume a strain-free, nearly octahedral conformation. In this conformation, the six methyl groups are oriented outward. The orbitals of the 24 unshared electrons line a cavity which in molecular models has a diameter adjustable from a low of about 1.7 to a high of about $3.0 \AA$, depending on the dihedral angles between adjacent aryl groups. A sphere the diameter of $\mathrm{Li}^{+}(1.5 \AA)$ cannot contact more than four oxygens simultaneously. A sphere the diameter of $\mathrm{Cs}^{+}(3.3 \AA)$ can be inserted into the model, but the aryl-aryl bonds are deformed in the model complex, and the orbitals of the electron pairs cannot all focus on the Cs^{+}simultaneously. The binding free energies (Table I) for (A) $)_{6}\left(\mathrm{CH}_{2}\right)_{2}$ (8) peak with Na^{+}and K^{+}as guests at 10.1 and $10.2 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively, and are very low for $\mathrm{Li}^{+}, \mathrm{Cs}^{+}, \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$, and t -$\mathrm{BuNH}_{3}\left(5.6-3.2 \mathrm{kcal} \mathrm{mol}^{-1}\right)$. Intermediate values of 7.7 for Rb^{+} and $6.8 \mathrm{kcal} \mathrm{mol}^{-1}$ for NH_{4}^{+}are observed. Thus expanding the 18 -membered rings of $\left(\mathrm{A}^{\prime}\right)_{6}(\mathbf{1})$ or $(\mathrm{A})_{4}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right)_{2}$ (4) to the 20 -membered ring of $(\mathrm{A})_{6}\left(\mathrm{CH}_{2}\right)_{2}$ destroys the selectivity of Na^{+} over K^{+}, and markedly decreases the peak binding free energy. Host $\left(\mathrm{A}^{\prime}\right)_{6}$ (1) binds Na^{+}with $19.3 \mathrm{kcal} \mathrm{mol}^{-12}$ and (A) 4_{4}^{-} $\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right)_{2}(4)$ with $13.5 \mathrm{kcal} \mathrm{mol}^{-1} .5$
The 21 -membered ring cycles $(\mathrm{A})_{6}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}(6)$ and $(\mathrm{A})_{6}(\mathrm{C}$ $\left.\mathrm{H}_{2}\right)_{2} \mathrm{SO}_{2}$ (7) in molecular models closely resemble one another. These two compounds show peak binding with K^{+}as guest at the $10.1-10.2-\mathrm{kcal} \mathrm{mol}^{-1}$ level, exceeding that of Na^{+}by $1.5-2.0 \mathrm{kcal}$ mol^{-1} and Rb^{+}by $0.9-1.8 \mathrm{kcal} \mathrm{mol}^{-1}$. Host $(\mathrm{A})_{6}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}$ binds Cs^{+}at the 7.3- and $\left.(\mathrm{A})_{6} \mathrm{CH}_{2}\right)_{2} \mathrm{SO}_{2}$ at the $6.2-\mathrm{kcal} \mathrm{mol}^{-1}$ level. In models of $(\mathrm{A})_{6}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}$, the unshared electron pairs of the sulfur

Scheme II

$\underset{\sim}{2}$
can turn inward to participate in the binding particularly well with the larger ions, Rb^{+}and Cs^{+}, but much less well with K^{+}. In models of $(\mathrm{A})_{6}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SO}_{2}$, either one or both of the oxygens of the SO_{2} group can orient inward to contact metal spheres of diameters ranging from 2.7 to $3.0 \AA$. The similarity in both the patterns and the values themselves for these two hosts suggests that neither S nor SO_{2} is involved in the binding.

Open-chain host $(\mathrm{A})_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}(5)$ gives peak binding with Cs^{+}as guest at the $9.1-\mathrm{kcal} \mathrm{mol}^{-1}$ level, and the values decrease to 8.6 with Rb^{+}, to 7.7 with K^{+}, to 6.2 with Na^{+}, and to $<6 \mathrm{kcal}$ mol^{-1} with Li^{+}. Similarly, the values decrease to 7.5 with $\mathrm{NH}_{4}{ }^{+}$, to 5.9 with $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$, and to $3.6 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ with t - $\mathrm{BuNH}_{3}{ }^{+}$. In contrast, analogue $\mathrm{H}\left(\mathrm{A}^{\prime}\right)_{6} \mathrm{H}$ (2) binds these eight ions with $-\Delta G^{\circ}$ values of $<6 \mathrm{kcal} \mathrm{mol}^{-1}$. Clearly the terminal $\mathrm{CH}_{2} \mathrm{OH}$ groups of $(\mathrm{A})_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}(5)$ play an important role in either organizing the system or providing additional binding sites or most probably both. In molecular models, seven of the eight oxygens of (A) ${ }_{6}$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2} \cdot \mathrm{Cs}^{+}$can simultaneously and without strain contact the Cs^{+}guest. The eighth $\mathrm{CH}_{2} \mathrm{OH}$ oxygen may act as an acceptor of a hydrogen bond from the other terminal $\mathrm{CH}_{2} \mathrm{OH}$ group, but it cannot participate in the binding of the guest. In models of
$(\mathrm{A})_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2} \cdot \mathrm{Rb}^{+},(\mathrm{A})_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2} \cdot \mathrm{~K}^{+}$, and $(\mathrm{A})_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2} \cdot$ Na^{+}, six oxygens (one from a $\mathrm{CH}_{2} \mathrm{OH}$ group and five from $\mathrm{CH}_{3} \mathrm{O}$ groups) in a roughly octahedral arrangement can contact the spheres in conformations of increasing strain as the sphere diameter decreases. In these structures, a terminal and binding $\mathrm{CH}_{2} \mathrm{OH}$ donates a hydrogen bond to the sequentially most distant OCH_{3} group, which, like the remaining $\mathrm{CH}_{2} \mathrm{OH}$ group, does not participate in the binding. These observed values of binding for $(\mathrm{A})_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$ make it appear likely that the host exists in its uncomplexed state as a ring system of one of the above two varieties, or possibly both. It is interesting that $(\mathrm{A})_{6}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$ distinguishes between K^{+}and Na^{+}by a power of ten in K_{a} value in spite of its rather flexible structure.
Host (A$)_{4}\left(\mathrm{BOCH}_{2}\right)_{2} \mathrm{~B}(9)$ contains a 22 -membered ring and a total of six oxygens. In models of the uncomplexed compound, the two methylenes can turn inward to fill the cavity in an apparently strain-free conformation. Alternatively, in this larger ring system, the methyls of the two outer anisyl units can turn inward without any apparent strain. A cavity with a minimum diameter of about $2,4 \AA$ can be formed in models in which the four anisyl methoxyls have the usual up-down-up-down ar-
rangement, the two benzyl oxygens lying roughly in the best plane of the macrocycle, with the plane of the xylyl group tilted to provide a dihedral angle of about 45° between the two planes. Although this cavity resembles that of $(\mathrm{A})_{4}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right)_{2}$ (4) in shape and the number of binding oxygens, $(\mathrm{A})_{4}\left(\mathrm{BOCH}_{2}\right)_{2} \mathrm{~B}(9)$ is a much poorer binder, whose $-\Delta G^{\circ}$ values for all eight ions are all $<6 \mathrm{kcal} \mathrm{mol}^{-1}$. This difference undoubtedly reflects the larger numbers of degrees of conformational freedom that must be frozen out for $(\mathrm{A})_{4}\left(\mathrm{BOCH}_{2}\right)_{2} \mathrm{~B}$ to complex in comparison to the number in $(\mathrm{A})_{4}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right)_{4}$. In the latter 18 -membered ring compound, all four anisyl groups are preorganized conformationally, and only the $\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}$ bridge must reorganize. ${ }^{5}$ In the 22 membered ring, the four anisyls as well as the bridge must probably be reorganized during complexation.

As model examination suggests should be the case, none of the hosts of this study show even moderately g od binding of $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$and t-BuNH 3^{+}. These ions must perch on their NH...O hydrogen bonding systems in complexes, and the aryl oxygens of 5-9 are noncomplementary to the tripod arrangement required for binding the three hydrogens of $\mathrm{RNH}_{3}{ }^{+}$. In contrast, the $\mathrm{NH}_{4}{ }^{+}$ion can nest in the cavities of these hosts, and a $-\Delta G^{\circ}$ value as high as $8.3 \mathrm{kcal} \mathrm{mol}^{-1}$ is observed for $(\mathrm{A})_{6}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}(6)$. For the four hosts whose values could be measured, Rb^{+}is bound better than $\mathrm{NH}_{4}{ }^{+}$by the relatively constant values of $1 \pm 0.1 \mathrm{kcal}$ mol^{-1}, which supports the suggestion that $\mathrm{NH}_{4}{ }^{+}$, like Rb^{+}, forms nesting complexes.

Experimental Section

General. All reactions were conducted under an atmosphere of dry argon or nitrogen. Tetrahydrofuran (THF) or diethyl ether were freshly distilled from sodium benzophenone ketyl just prior to use. Benzene, dimethylformamide (DMF), and thionyl chloride were purified as usual. ${ }^{15}$ All other solvents were fractionally distilled before use. Flash chromatography was carried out on silica gel 60 (E. M. Merck, particle size $0.040-0.063 \mathrm{~mm}, 230-240$ mesh ASTM). Medium-pressure chromatography (120 psi at ca. $10 \mathrm{~mL} / \mathrm{min}$) was conducted on either of three Altex columns: $250 \mathrm{~mm} \times 15 \mathrm{~mm}$ (column A), $1000 \mathrm{~mm} \times 25 \mathrm{~mm}$ (column B), or $600 \mathrm{~mm} \times 25 \mathrm{~mm}$ (column C). Medium-pressure columns were packed with the same silica gel as described for flash chromatography. Gravity columns were packed with silica gel 60 ($\mathrm{E} . \mathrm{M}$. Merck, particle size $0.063-0.200 \mathrm{~mm}$) or aluminum oxide (E. M. Merck, neutral grade, particle size $0.063-0.200 \mathrm{~mm}, 70-230$ mesh ASTM). Gel permeation chromatography was performed on a $20 \mathrm{ft} \times 0.375 \mathrm{in}$. (outer diameter) column packed with 200 g of $100-\AA$ styragel (Waters Associates) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the mobile phase at flow rates of $3.5-4.0 \mathrm{~mL} / \mathrm{min}$. Thin-layer chromatography was conducted on precoated silica gel plates (E. M. Merck, F_{254}, thickness 0.2 mm). Melting points below $240^{\circ} \mathrm{C}$ were measured on a Thomas-Hoover and those above $240^{\circ} \mathrm{C}$ on a Mel-Temp apparatus. Infrared spectra were taken on a Perkin-Elmer 297 grating spectrophotometer. Mass spectra were recorded on an AE-1 Model MS-9 double-focusing spectrometer interfaced by Kratos Co. to a Data General Nova 3. Mass spectra were reported at 70 eV . Proton NMR spectra were obtained on a $200-\mathrm{MHz}$ WP- 200 spectrometer and ${ }^{13} \mathrm{C}$ NMR at 50.29 MHz on the same instrument or at 22.49 MHz on a Jeol- 90 spectrometer. All chemical shifts are reported in parts per million downfield from internal $\left(\mathrm{CH}_{3}\right)_{4}, \mathrm{Si}$ in CDCl_{3} unless otherwise indicated. Elemental analyses were within 0.30% of theory. Association constants were determined at 0.015 M concentrations of host and guest by the published procedure. ${ }^{13}$

3,3'-Diodo-2,2'-dimethoxy-1, $\mathbf{1}^{\prime}$-biphenyl (10). To a suspension of $52.12 \mathrm{~g}(243.2 \mathrm{mmol})$ of $2,2^{\prime}$-dimethoxy-1, 1^{\prime}-biphenyl and 75.0 mL (469.9 mmol) of tetramethylethylenediamine in 600 mL of dry ether at $-78^{\circ} \mathrm{C}$ was added 582 mmol of butyllithium in hexane. The reaction mixture was allowed to warm to room temperature. The reaction mixture was stirred for 5 h , and the dilithiate suspension was cooled to $0^{\circ} \mathrm{C}$. To the mixture was added by cannulation a solution of $165 \mathrm{~g}(650.1 \mathrm{mmol})$ of iodine in 1 L of dry ether (the solubility of iodine in ether at room temperature is $0.18 \mathrm{~g} / \mathrm{mL}$). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min and then at room temperature for 1.5 h . The mixture was quenched with 500 mL of water saturated with $\mathrm{Na}_{2} \mathrm{SO}_{3}$. The organic phase was dried over MgSO_{4} and concentrated under reduced pressure. The residue was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at $-20^{\circ} \mathrm{C}$. The crude product dissolved in a minimum of dichloromethane was flash chromatographed through a short Florisil column packed and eluted with $1 / 1$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane to afford the product as a white solid. Recrystallization of this material from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /heptane at $-20^{\circ} \mathrm{C}$ provided analytically pure diiodide as thick, white rods: $51.81 \mathrm{~g}(46 \%) ; \mathrm{mp} 101-102.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 3.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.89\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{ArH}_{4}, J=7.7 \mathrm{~Hz}\right), 7.34(\mathrm{~d}$ of d, $1 \mathrm{H}, \mathrm{ArH}_{5}, J_{o}=7.7 \mathrm{~Hz}, J_{m}=1.3 \mathrm{~Hz}$), 7.81 (d of d, $1 \mathrm{H}, \mathrm{ArH}_{6}$, $J_{o}=7.7 \mathrm{~Hz}, J_{m}=1.3 \mathrm{~Hz}$); MS, $m / e, \mathrm{M}^{+} 466$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{I}_{2} \mathrm{O}_{2}: \mathrm{C}, \mathrm{H}$, and I.

4,4'-(2,2'-Dimethoxy[1, $\mathbf{1}^{\prime}$-biphenyl]-3, $\mathbf{3}^{\prime}$ 'diyl) bis(dibenzofuran) (12). A mixture of $48.38 \mathrm{~g}(195.80 \mathrm{mmol})$ of 4 -bromodibenzofuran, ${ }^{16} 6.70 \mathrm{~g}$ (275.6 mmol) of $\mathrm{Mg}, 250 \mathrm{~mL}$ of the dry ether, and a trace of iodine was refluxed for 2 h . This Grignard mixture was cooled and transferred via cannula into a mixture of $30.09 \mathrm{~g}(64.56 \mathrm{mmol})$ of diiodide 10 and 4.24 $\mathrm{g}(6.5 \mathrm{mmol})$ of $\mathrm{Ni}(\mathrm{Cl})_{2}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}{ }^{6}$ in 250 mL of dry ether at $0^{\circ} \mathrm{C}$. The black mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and at reflux for 6 h and then at room temperature for 61 h . The reaction mixture was poured into ice/hydrochloric acid and the organic phase was removed. The aqueous phase was extracted with $2 \times 500 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were evaporated in vacuo. The residue was flash chromatographed $\left(\mathrm{SiO}_{2}, 6 \times 42 \mathrm{~cm}\right.$, hexane $\rightarrow 1 / 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $)$ to afford the crude product. Recrystallization of the crude product from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane gave pure 12 as a white crystalline solid: $26.58 \mathrm{~g}(75 \%)$; $\mathrm{mp} 192-194{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{26} \mathrm{O}_{4}: \mathrm{C}$ and $\mathrm{H} .{ }^{17}$

4-Bromodibenzofuran. To a solution of $67.3 \mathrm{~g}(0.40 \mathrm{~mol})$ of dibenzofuran in 700 mL of dry THF was added at $-40^{\circ} \mathrm{C} 180 \mathrm{~mL}$ of a 2.4 M BuLi solution in hexane $(0.43 \mathrm{M})$. The mixture was allowed to warm to $25^{\circ} \mathrm{C}$ and stirred at this temperature for 5 h . The solution was cooled to $-78^{\circ} \mathrm{C}$ and $109 \mathrm{~g}(0.85 \mathrm{~mol})$ of 1,2 -dibromomethane dissolved in 50 mL of THF (dry) was added dropwise with stirring. The reaction mixture was allowed to warm to room temperature and stirred for 2 h . The solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water and aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution, and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was evaporated, and the residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane to give product as white crystals: $80.0 \mathrm{~g}(81 \%) ; \mathrm{mp}$ $67-69^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{BrO}: \mathrm{C}, \mathrm{H}$, and Br .

Diethyl 6,6' ${ }^{\prime}$ (2,2'-Dimethoxy $\left[1,1^{\prime}\right.$-biphenyl]-3, $\mathbf{3}^{\prime}$-diyl)bis(4-dibenzofuran) carboxylate (13). To a solution of $3.58 \mathrm{~g}(6.55 \mathrm{mmol})$ of $\mathbf{1 2}$ in 70 mL of dry THF at $-78^{\circ} \mathrm{C}$ was added 18.9 mmol of butyllithium in hexale. The reaction mixture was allowed to warm to $25^{\circ} \mathrm{C}$. After being stirred for 4 h , the dilithiate suspension was cooled to $-78^{\circ} \mathrm{C}$. To this was added 25.2 mL (264 mmol) of ethyl chloroformate in one portion. The yellow solution was warmed to $25^{\circ} \mathrm{C}$. After being stirred at $25^{\circ} \mathrm{C}$ for 18 h , the reaction mixture was concentrated under reduced pressure. The residue was partitioned between 200 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 100 mL of water. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was flash chromatographed $\left(\mathrm{SiO}_{2}, 6 \times 26 \mathrm{~cm}\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the crude product which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane to afford pure 13 as a slightly yellow crystalline solid: $2.43 \mathrm{~g}(54 \%) ; \mathrm{mp} 175-177^{\circ} \mathrm{C}$. An analytical sample was prepared by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane to give colorless crystals; mp $177.5-179{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.35\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right), 3.36$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.40\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right), 7.28-8.18(\mathrm{~m}$, $9 \mathrm{H}, \mathrm{ArH})$; MS, $m / e, \mathrm{M}^{+} 690$. Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{38} \mathrm{O}_{8}: \mathrm{C}$ and H .

Dimethyl $2, \mathbf{2}^{\prime}, 2^{\prime \prime}, 2^{\prime \prime \prime}, 2^{\prime \prime \prime \prime}, 2^{\prime \prime \prime \prime \prime}$-Hexamethoxy- $\left[1, \mathbf{1}^{\prime}: 3^{\prime}, 1^{\prime \prime}: 3^{\prime \prime}, 1^{\prime \prime \prime}: \mathbf{3}^{\prime \prime \prime}\right.$, $1^{\prime \prime \prime \prime}: 3^{\prime \prime \prime \prime}, 1^{\prime \prime \prime \prime \prime}$-sexiphenyl] $]-3,3^{\prime \prime \prime \prime \prime}$-dicarboxylate (14). Approximately half of a mixture of $75.6 \mathrm{~g}(1.89 \mathrm{~mol})$ of NaOH and $125.4 \mathrm{~g}(1.90 \mathrm{~mol})$ of KOH was heated in a steel crucible to $200^{\circ} \mathrm{C}$ whereupon fusion occurred. To the molten base was added $17.45 \mathrm{~g}(25.26 \mathrm{mmol})$ of diester 13 followed by the remaining $\mathrm{NaOH} / \mathrm{KOH}$ mixture in such a way that the organic material was covered by the solid base. The mixture was then mechanically stirred as the temperature was raised to $300^{\circ} \mathrm{C}$ and not allowed to go higher. The frothing, creamy mixture was stirred for 1 h (timed from the addition of the diester) and then poured into a shallow pan. After being cooled, the solid was dissolved in water and filtered through a coarse fritted glass funnel to remove insoluble impurities. The collected material (if any) was washed with water, and the combined filtrates were cooled in an ice bath. This aqueous solution was carefully acidified with concentrated hydrochloric acid and filtered. The collected solid was washed with water and dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ in vacuo. The slightly purplish solid was added to $123.91 \mathrm{~g}(896.5 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}, 53 \mathrm{~mL}$ (560.1 mmol) of dimethyl sulfate, and 1000 mL of acetone. This mixture was mechanically stirred at reflux for 29 h . The reaction mixture was filtered, and the collected solid was washed liberally with acetone. The mother liquor was concentrated under reduced pressure, and the residue was partitioned between 500 mL of ether and 100 mL of $1 / 1$ concentrated $\mathrm{NH}_{4} \mathrm{OH}$ /water. The aqueous phase was extracted with 100 mL of ether, and the combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was flash chromatographed (SiO_{2},
(16) We thank Dr. Manfred Lauer for preparation of these compounds.
(17) Gilman, H.; Van Ess, P. R. J. Am. Chem. Soc. 1939, 61, 1365-1371.
$6 \times 48 \mathrm{~cm}, 1 / 2$ ethyl acetate/hexane) to afford the pure diester as a white foam after drying in vacuo: $16.76 \mathrm{~g}(88 \%) ;{ }^{1} \mathrm{H}$ NMR $\delta 3.27$ (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.92(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{3}$), 7.15-7.81 (m, $\left.9 \mathrm{H}, \mathrm{ArH}\right)$; MS, $m / e, \mathrm{M}^{+} 754$. Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{42} \mathrm{O}_{10}$: C and H .
 sexiphenyl]-3, $3^{\prime \prime \prime \prime \prime}$-dimethanol (5). To a suspenion of 16.00 g (21.19 mmol) of diester 14 in 500 mL of ether and 100 mL of THF cooled to $-78^{\circ} \mathrm{C}$ was added $1.78 \mathrm{~g}(44.56 \mathrm{mmol})$ of LiAlH_{4}. The reaction mixture was allowed to warm slowly to room temperature. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 20 h , cooled to $0^{\circ} \mathrm{C}$, and quenched with a 15% NaOH solution in water. The reaction mixture was filtered, and the filter cake was washed with ether. The organic phase was washed with 300 mL of water. The aqueous layer was neutralized to pH 7 with aqueous HCl followed by aqueous NaHCO_{3} solution (saturated) and was then extracted with 500 mL of ether. The combined organic phases were dried (MgSO_{4}) and concentrated in vacuo. The residue was flash chromatographed ($\mathrm{SiO}_{2}, 6 \times 42 \mathrm{~cm}, 1 / 1$ ethyl acetate/hexane $\rightarrow 1 / 1$ ethyl acetate $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide the diol as a white solid: $13.02 \mathrm{~g}(88 \%) ; \mathrm{mp}$ $176-178^{\circ} \mathrm{C}$. An analytical sample was prepared by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to give fragile, white clusters: $\mathrm{mp} 178-179.5^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.50(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $4.77\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 7.11-7.43(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH}) ; \mathrm{MS}, m / e, \mathrm{M}^{+}$ 698. Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{42} \mathrm{O}_{8}$: C and H .
$3,3^{\prime \prime \prime \prime \prime}$ - Bis(chloromethyl) $-2,2^{\prime}, 2^{\prime \prime}, 2^{\prime \prime \prime}, 2^{\prime \prime \prime \prime}, 2^{\prime \prime \prime \prime \prime \prime}$-hexamethoxy$\mathbf{1 , 1} \mathbf{1}^{\prime}: \mathbf{3}^{\prime}, \mathbf{1}^{\prime \prime}: \mathbf{3}^{\prime \prime}, \mathbf{1}^{\prime \prime \prime}: \mathbf{3}^{\prime \prime \prime}, \mathbf{1}^{\prime \prime \prime \prime}: \mathbf{3}^{\prime \prime \prime \prime}, \mathbf{1}^{\prime \prime \prime \prime \prime}-$ sexiphenyl (15). A mixture of 2.278 $\mathrm{g}(8.69 \mathrm{mmol})$ of triphenylphosphine, $1.134 \mathrm{~g}(9.99 \mathrm{mmol})$ of N chlorosuccinimide, and 250 mL of THF was stirred at $25^{\circ} \mathrm{C}$ for 15 min To this white suspension was added $2.493 \mathrm{~g}(3.57 \mathrm{mmol})$ of diol 5 . The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 8 h during which time it became an amber solution. The reaction mixture was partitioned between 250 mL of ether and 150 mL of water. The aqueous layer was extracted with 100 mL of ether, and the combined organic layers were washed with 50 mL of brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent in vacuo left a residue which was flash chromatographed $\left(\mathrm{SiO}_{2}, 3.5 \times 40 \mathrm{~cm}, 10 / 1\right.$ hexane/ethyl acetate) to afford pure dichloride as a white foam after drying under vacuum: $2.598 \mathrm{~g}(99 \%)$; ${ }^{1} \mathrm{H}$ NMR $\delta 3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.73\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right)$, 7.11-7.45 (m, $9 \mathrm{H}, \mathrm{ArH})$; MS, $m / e, \mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right)$ 734. Anal. Caled for $\mathrm{C}_{44} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{O}_{6}: \mathrm{C}, \mathrm{H}$, and Cl

34, 35, $\mathbf{3 6}, \mathbf{3 7 , 3 8 , 3 9 - H e x a m e t h o x y - 2 8 - t h i a h e p t a c y c l o - ~}$ [28.3.1.1 $\left.{ }^{2.6} \cdot 1^{7.11} \cdot 1^{12.16} \cdot 1^{17,21} \cdot \mathbf{1}^{22.26}\right]$ nonatriaconta-1(34),2,4,6(39),7,9,11-(38),12,14,16(37),17,19,21(36),22,24,26(35),30,32-octadecaene (6). To a refluxing suspension of 514 mg (w/oil) (10.71 mmol) of NaH in 900 $\mathrm{mL} /$ dry THF was added by syringe pump a solution of 2.598 g (3.53 mmol) of dichloride $\mathbf{1 5} \mathrm{in} 51 \mathrm{~mL}$ of THF and dropwise a solution of 267 mg (3.55 mmol) of thioacetamide in 51 mL of THF over a $24-\mathrm{h}$ period. The reaction mixture was refluxed an additional 16 h , cooled, and quenched with water. The products were partitioned between 200 mL of ether and 200 mL of water. The aqueous phase was extracted with 100 mL of ether, and the combined organic phases were washed with 100 mL of brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo. The residue was flash chromatographed $\left(\mathrm{SiO}_{2}, 3.5 \times 40 \mathrm{~cm}, 4 / 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ ethyl acetate $\rightarrow 2 / 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethyl acetate) to provide the pure cycle as a white solid, $1.85 \mathrm{~g}(75 \%)$. An analytical sample was prepared by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane to give thick, colorless crystals: mp $249-252^{\circ} \mathrm{C}$ ${ }^{1} \mathrm{H}$ NMR $\delta 2.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.35(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.62\left(\mathrm{~d}, \mathrm{I} \mathrm{H},-\mathrm{CH}_{\mathrm{A}} \mathrm{HS}-, J=12.8 \mathrm{~Hz}\right), 3.93\left(\mathrm{~d}, \mathrm{I} \mathrm{H},-\mathrm{CHH}_{\mathrm{B}} \mathrm{S}-\right.$ $J=12.8 \mathrm{~Hz}), 7.03-7.42(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 30.7\left(\mathrm{CH}_{2} \mathrm{~S}\right), 60.0$ $\left(\mathrm{OCH}_{3}\right), 60.3\left(\mathrm{OCH}_{3}\right), 61.2\left(\mathrm{OCH}_{3}\right), 122.3,122.8,123.2,129.6,130.0$, 130.3, 130.6, 132.4, 132.8, 156.7, 156.9, 157.8; MS, $m / e 698$ (16), 697 (49), $\mathrm{M}^{+} 696$ (100), $681(25), 666$ (14), 665 (26), 664 (11), 663 (21), 649 (18), 617 (16), 325 (12), 317 (10). Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{~S}$: C H , and S

34, 35, 36, 37, 38, 39-Hexamethoxy-28-thiaheptacyclo28.3.1.1 $\left.{ }^{2,6} \cdot 1^{1 / 11} .1^{12,16} \cdot 1^{17.21} \cdot 1^{22.26}\right]$ nonatriaconta-1 (34), 2,4,6(39), 7,9,11. (38),12,14,16(37),17,19,21(36),22,24,26(35),30,32-octadecaene 28,28Dioxide (7). To a solution of $1.40 \mathrm{~g}(2.01 \mathrm{mmol})$ of cycle 6 in 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ was added a solution of $2.50 \mathrm{~g}(11.6 \mathrm{mmol})$ of m chloroperbenzoic acid in 75 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ dropwise over 15 min . The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min and then at $25^{\circ} \mathrm{C}$ for an additional 1.5 h . After being cooled again to $0^{\circ} \mathrm{C}$, the reaction mixture was quenched with 50 mL of water saturated with NaHSO_{3}. The products were partitioned between 250 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 100 mL of water. The organic layer was washed with $2 \times 100 \mathrm{~mL}$ of $1 / 1 \mathrm{satu}$ rated aqueous NaHCO_{3} solution/water. The combined aqueous layers were extracted with 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were washed with 100 mL of brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The solid residue was flash chromatographed $\left(\mathrm{SiO}_{2}, 3.5 \times 41 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow 2 / 1 \rightarrow 1 / 1 \rightarrow 1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ ethyl acetate
\rightarrow ethyl acetate) to provide the cyclic sulfone as a white solid, 1.307 g (89%). An analytical sample was prepared by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane to give colorless crystals: mp $315-322{ }^{\circ} \mathrm{C}$ with gas evolution and dec; ${ }^{1} \mathrm{H}$ NMR $\delta 2.92$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.06 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.29\left(\mathrm{~d}, 1 \mathrm{H},-\mathrm{CH}_{\mathrm{A}} \mathrm{HSO}_{2}-, J=13.6 \mathrm{~Hz}\right), 4.64(\mathrm{~d}$, $\left.1 \mathrm{H},-\mathrm{CHH}_{\mathrm{B}} \mathrm{SO}_{2}-, J=13.6 \mathrm{~Hz}\right), 7.10-7.52(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 53.7\left(\mathrm{CH}_{2} \mathrm{SO}_{2}\right), 60.0\left(\mathrm{OCH}_{3}\right), 60.9\left(\mathrm{OCH}_{3}\right), 61.5\left(\mathrm{OCH}_{3}\right), 120.8$, 122.6, 122.9, 123.2, 129.7, 131.8, 132.1, 132.8, 132.9, 157.2, 157.7, 157.8; MS, $m / e, 729$ (10), $\mathrm{M}^{+} 728$ (22), 666 (12), 665 (43), 664 (95), 634 (31), 633 (61), 619 (20), 618 (56), 617 (100), 602 (18), 601 (29), 587 (12), 586 (10), 585 (11). Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{40} \mathrm{SO}_{8}: \mathrm{C}, \mathrm{H}$, and S
33,34,35,36,37,38-Hexamethoxyheptacyclo[27.3.1.1 ${ }^{2,6} \cdot 1^{7,11} \cdot 1^{12,16}$. $\left.1^{17.21} .1^{22.26}\right]$ octatriaconta-1 (33), 2,4,6(38), 7,9,11(37), 12,14,16(36), 17,19,21(35),22,24,26(34),29,31-octadecaene (8). A mixture of 750 mg (1.03 mmol) of cycle 7 and 200 mL of benzene (Spectro-grade) was degassed with argon under sonication (Sonicor, 60 Hz) for 30 min . The colorless solution was irradiated for 24 h with a $450-\mathrm{W}$ Hanovia highpressure lamp with use of a Vycor filter. Argon was bubbled into the reaction mixture throughout the irradiation time to remove SO_{2}. The solvent was removed in vacuo leaving a residue which was chromatographed $\left(\mathrm{Al}_{2} \mathrm{O}_{3}, 2 \%\right.$ water deactivated, $3 \times 28 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow 10 / 1 \rightarrow$ $5 / 1 \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethyl acetate) to provide $594 \mathrm{mg}(87 \%)$ of the desired cycle. Recrystallization of this material from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethanol gave analytically pure 8 as white clusters: 511 mg (75%); $\mathrm{mp} 268-277^{\circ} \mathrm{C}$ with slight dec; ${ }^{1} \mathrm{H}$ NMR $\delta 2.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$ $3.01-3.20\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 3.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.07-7.42(\mathrm{~m}, 9$ $\mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 30.46\left(\mathrm{CH}_{2}\right), 60.17\left(\mathrm{OCH}_{3}\right), 60.28\left(\mathrm{OCH}_{3}\right), 61.55$ $\left(\mathrm{OCH}_{3}\right), 122.68,122.93,128.31,129.25,129.36,129.51,129.67,129.71$ $132.43,132.55,132.69,132.79,133.62,137.04,156.25,157.54,158.46$ IR (KBr) 2940, 1455, 1400, 1230, 1175, 1010, 760; MS, $m / e, 666$ (11), 665 (48), $\mathrm{M}^{+} 664$ (100), 634 (11), 633 (21), 618 (19), 617 (34), 332 (19). Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{40} \mathrm{O}_{6}$: C and H .

2-(2,10-Dimethyl-6,6-diphenyldibenzo[d,f][1,3]dioxepin-4-yl)-4methylphenol (17). A mixture of $8.21 \mathrm{~g}(25.62 \mathrm{mmol})$ of triol 16 and $6.11 \mathrm{~g}(25.77 \mathrm{mmol})$ of dichlorodiphenylmethane was heated to $180-190$ ${ }^{\circ} \mathrm{C}$ whereupon fusion began. The frothing mixture was maintained at $180-190^{\circ} \mathrm{C}$ for 35 min or until hydrogen chloride evolution had ceased. After cooling, the glass was dissolved in 200 mL of ether and the solution was washed with $2 \times 50 \mathrm{~mL}$ of water saturated with $\mathrm{NaHCO}_{3}, 2 \times 50$ mL of water, and 50 mL of brine. The solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was evaporated under reduced pressure. The residue was chromatographed on 265 g of SiO_{2} packed and eluted with $6 / 4$ hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to provide ketal 17 as a white foam, 12.08 g (97%). An analytical sample was prepared by recrystallization from hexane to give white crystals: $\operatorname{mp} 170-171^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.37$ (s, $3 \mathrm{H}, \mathrm{ArCH}_{3}$), 2.41 (s, $3 \mathrm{H}, \mathrm{ArCH}_{3}$), $5.86-7.37$ (m, $18 \mathrm{H}, \mathrm{ArH}$); MS $m / e, \mathrm{M}^{+} 484$ (100). Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{O}_{3}: \mathrm{C}$ and H .
2,10-Dimethyl-4-[5-methyl-2-(phenylmethoxy)phenyl]-6,6-diphenyldibenzo[d,f $\}[1,3]$ dioxepin (18). To 22.96 g 47.38 mmol) of ketal 17 in 300 mL of acetone was added $14.31 \mathrm{~g}(103.54 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 9.93 g (58.06 mmol) of benzyl bromide. This mixture was refluxed in the dark for 78 h , cooled, and concentrated in vacuo. The residue was partitioned between 250 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 250 mL of water. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under pressure to afford 18 as a white solid homogeneous to TLC, $27.25 \mathrm{~g}(>99 \%)$. An analytical sample was prepared by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethanol to give large white crystals: mp $177.5-179{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.36$ $\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 4.82\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 6.45-7.35(\mathrm{~m}, 23 \mathrm{H}, \mathrm{ArH})$ MS, $m / e, \mathrm{M}^{+} 574$. Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{34} \mathrm{O}_{3}$: C and H .
$5,5^{\prime}, 5^{\prime \prime}$-Trimethyl-2' ${ }^{\prime \prime}$ (phenylmethoxy)-[1, $\mathbf{1}^{\prime}: \mathbf{3}^{\prime}, 1^{\prime \prime}$-terphenyl]- $2,2^{\prime}$-diol (19). To 27.25 g (47.4 mmol) of benzyl ketal 18 was added 40 mL of water and 160 mL of glacial acetic acid. The resulting emulsion was refluxed for 30 h during which time it became homogeneous. After cooling, the reaction mixture was concentrated in vacuo, and the residue was dissolved in 500 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with 100 mL of saturated aqueous NaHCO_{3} solution. The aqueous phase was extracted with 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was flash chromatographed $\left(\mathrm{SiO}_{2}, 28 \times 8.5 \mathrm{~cm}, 10 \%\right.$ ether $/$ hexane \rightarrow 20% ether /hexane) to provide diol 19 as a white foam after drying under vacuum: $18.94 \mathrm{~g}(97 \%) ;{ }^{1} \mathrm{H}$ NMR $\delta 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.36$ (s, 3 $\left.\mathrm{H}, \mathrm{ArCH}_{3}\right), 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 5.06\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 6.15(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{OH}), 6.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.90-7.28(\mathrm{~m}, 13 \mathrm{H}, \mathrm{ArH}) ; \mathrm{MS}, m / e, \mathrm{M}^{+}$ 410. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{3}$: C and H .

3-Bromo-5, $5^{\prime}, 5^{\prime \prime}$-trimethyl- $2^{\prime \prime}$-(phenylmethoxy)-[$1,1^{\prime}: 3^{\prime}, 1^{\prime \prime}$-ter phenyl]-2,2'-diol (20). To $18.94 \mathrm{~g}(46.13 \mathrm{mmol})$ of benzyl diol 19 in 1400 mL of CHCl_{3} cooled to $0^{\circ} \mathrm{C}$ was added $19.49 \mathrm{~g}(47.57 \mathrm{mmol})$ of 2,4,4,6-tetrabromocyclohexa-2,5-dienone. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 4 h , and 100 mL of water and 100 mL of saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution were added. The organic solution was removed,
dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was flash chromatographed $\left(\mathrm{SiO}_{2}, 32 \times 8.5 \mathrm{~cm}, 10 \%\right.$ ether $/$ hexane \rightarrow 20% ether/hexane) to afford the brominated diol 20 as a white foam after drying under vacuum: $21.08 \mathrm{~g}(93 \%)$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right)$, $2.36\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 5.06\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 6.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.73$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 6.96-7.33(\mathrm{~m}, 12 \mathrm{H}, \mathrm{ArH}) ; \mathrm{MS}, m / e, \mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right) 488$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{BrO}_{3}: \mathrm{C}, \mathrm{H}$, and Br .

3-Bromo-2,2'-dimethoxy-5,5',5' ${ }^{\prime \prime}$-trimethyl-2' ${ }^{\prime \prime}$ (phentylmethoxy)$\mathbf{1}^{\prime} \mathbf{1}^{\prime}: \mathbf{3}^{\prime}, \mathbf{1}^{\prime \prime}$-terphenyl (21). To $13.31 \mathrm{~g}(\mathbf{2 7 . 2 0} \mathrm{mmol})$ of diol $\mathbf{2 0}$ in 400 mL of THF was added 50 mL of water and $7.0 \mathrm{~g}(175 \mathrm{mmol})$ of NaOH . This mixture was stirred for 15 min , and then $10.3 \mathrm{~mL}(109 \mathrm{mmol})$ of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{4}$ was added. The reaction mixture was refluxed for 1.5 h , cooled, quenched with concentrated $\mathrm{NH}_{4} \mathrm{OH}$, and partitioned between 200 mL of ether and 100 mL of water. The organic phase was washed with 100 mL of water and 100 mL of brine. The combined aqueous phases were extracted with 50 mL of ether, and the combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo, and the residue was dried at $100^{\circ} \mathrm{C}$ under vacuum to give the ether 21 as a slightly yellow viscous oil, pure enough for use in subsequent reactions ($14.09 \mathrm{~g},>99 \%$). An analytical sample prepared via preparatory TLC ($\mathrm{SiO}_{2}, 10 \%$ ether/hexane) gave 21 as a viscous oil: 'H NMR $\delta 2.29$ (s $3 \mathrm{H}, \mathrm{ArCH}_{3}$), $2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 3.19(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{OCH}_{3}\right), 3.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.03\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 6.90-7.35(\mathrm{~m}$ $12 \mathrm{H}, \mathrm{ArH}) ; \mathrm{MS}, m / e, \mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right)$ 516. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{BrO}_{3}$: C, H, and Br .

2, $2^{\prime \prime \prime \prime \prime}-$ Bis (phenylmethoxy) $-2^{\prime}, 2^{\prime \prime}, 2^{\prime \prime \prime \prime}, 2^{\prime \prime \prime \prime \prime}$-tetramethoxy$5,5^{\prime}, 5^{\prime \prime}, 5^{\prime \prime \prime}, 5^{\prime \prime \prime \prime}, 5^{\prime \prime \prime \prime \prime}$-hexamethyl-1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}: 3^{\prime \prime}, 1^{\prime \prime \prime}: 3^{\prime \prime \prime}, 1^{\prime \prime \prime \prime}: 3^{\prime \prime \prime \prime}, 1^{\prime \prime \prime \prime \prime}$-sex $1-$ phenyl (22). To a solution of $2.88 \mathrm{~g}(5.57 \mathrm{mmol})$ of triphenyl 21 in 75 mL of dry THF at $-78^{\circ} \mathrm{C}$ was added 5.88 mmol of butyllithium in hexane. The light yellow solution was stirred 10 min at $-78^{\circ} \mathrm{C}$ and then transferred via cannula into a refluxing solution of $3.95 \mathrm{~g}(11.18 \mathrm{mmol})$ of $\mathrm{Fe}(\mathrm{acac})_{3}$ in 100 mL of benzene. The reaction mixture was refluxed for 2.5 h , cooled, and partitioned between 250 mL of ether and 200 mL of $1 / 1$ concentrated hydrochloric acid/water. The organic phase was washed with $4 \times 125 \mathrm{~mL}$ of water. The combined aqueous washings were extracted with 150 mL of ether, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was chromatographed (medium pressure, SiO_{2}, columns $\mathrm{A}+\mathrm{B}$, 10% ether/hexane) to provide sexiphenyl 22 as a white foam after drying
under vacuum: $1.25 \mathrm{~g}(51 \%) ;{ }^{1} \mathrm{H}$ NMR $\delta 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.34$ $\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 3.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.02(\mathrm{~s}, 2$ $\left.\mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 6.88-7.27(\mathrm{~m}, 12 \mathrm{H}, \mathrm{ArH}) ; \mathrm{MS}, m / e, \mathrm{M}^{+} 874$. Anal. Calcd for $\mathrm{C}_{60} \mathrm{H}_{58} \mathrm{O}_{6}$: C and H .
$2^{\prime}, 2^{\prime \prime}, 2^{\prime \prime \prime}, 2^{\prime \prime \prime \prime}$-Tetramethoxy-5, $5^{\prime}, 5^{\prime \prime}, 5^{\prime \prime \prime}, 5^{\prime \prime \prime \prime}, 5^{\prime \prime \prime \prime \prime}$-hexamethyl$\left[1,1^{\prime}: 3^{\prime}, 1^{\prime \prime}: 3^{\prime \prime}, 1^{\prime \prime \prime}: 3^{\prime \prime \prime}, 1^{\prime \prime \prime \prime}: 3^{\prime \prime \prime \prime}, 1^{\prime \prime \prime \prime \prime}\right.$-sexiphenyl]-2, $2^{\prime \prime \prime \prime \prime}$-diol (23). A mixture of $1.25 \mathrm{~g}(1.43 \mathrm{mmol})$ of sexiphenyl $22,750 \mathrm{mg}$ of 10% palladium/carbon, 25 mL of ethyl acetate, and 25 mL of ethanol was hydrogenated under 2.5 atm of hydrogen in a Parr apparatus for 1 h at $25^{\circ} \mathrm{C}$. The reaction mixture was filtered through Whatman No. 50 hardened filter paper and concentrated under reduced pressure to afford the diol 23 as a white foam after drying under vacuum: $0.96 \mathrm{~g}(97 \%) ;{ }^{1} \mathrm{H}$ NMR $\delta 2.35$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}$), $2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 3.31(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.91-7.25(\mathrm{~m}, 14 \mathrm{H}, \mathrm{ArH}) ; \mathrm{MS}, m / e$, M^{+}694. Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{46} \mathrm{O}_{6}$: C and H .

30,35-Dihydro-37, 38,39,40-tetramethoxy-3,7,12,17,22,26-hexa-methyl-5,9:10,14,15,19:20,24-tetramethenotribenzo[$c, g, c][1,6] d i o x a-$ cyclotriacontin (9). To a refluxing suspension of 351 mg (w/oil) of NaH (7.31 mmol) in 250 mL of THF was added dropwise with stirring a solution of 960 mg of diol $23(1.382 \mathrm{mmol})$ and $188 \mathrm{mg}(0.71 \mathrm{mmol})$ of 1,2-bis(bromomethyl) benzene in 200 mL of THF under high dilution over an 88 -h period. The reaction mixture was refluxed an additional 103 h , cooled, and quenched with water. The solvent was removed in vacuo, and the residue was partitioned between 300 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 100 mL of water. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was chromatographed (medium pressure, SiO_{2}, column $\mathrm{B}, 15 \%$ ether/hexane) to yield the cycle as a white solid, 220 mg (20\%). An analytical sample was prepared by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol to give white crystals: mp $263-271^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.33$ (s, $6 \mathrm{H}, \mathrm{ArCH}_{3}$), 2.35 (s, $3 \mathrm{H}, \mathrm{ArCH}_{3}$), $2.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.90(\mathrm{~s}, 2 \mathrm{H}, J=13.3 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2}\right), 5.15\left(\mathrm{~d}, 2 \mathrm{H}, J=13.3 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.71-7.33(\mathrm{~m}, 18 \mathrm{H}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR $\delta 20.52\left(\mathrm{ArCH}_{3}\right), 20.72\left(\mathrm{ArCH}_{3}\right), 20.79\left(\mathrm{ArCH}_{3}\right), 59.80$ $\left(\mathrm{OCH}_{3}\right), 60.26\left(\mathrm{OCH}_{3}\right), 66.91\left(\mathrm{OCH}_{2}\right), 112.29,127.04,128.31,128.72$, $129.15,129.62,130.00,130.34,130.85,131.10,131.36,131.73,132.02$, 132.26, 132.65, 134.47, 154.34, 154.46, 154.58; IR (KBr) 2930, 1600, $1500,1465,1415,1235,1020,865,805,750 ; \mathrm{M}^{+}, m / e, 798(13), 797$ (50), $\mathrm{M}^{+} 796$ (100), 779 (22), 778 (41), 765 (20), 764 (18), 749 (15), 692 (17), 105 (15). Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{52} \mathrm{O}_{6}$: C and H .

Methyl Transfers. 8. The Marcus Equation and Transfers between Arsenesulfonates

Edward S. Lewis* and Daniel D. Hu
Contribution from the Department of Chemistry, Rice University, Houston, Texas 77251. Received October 11, 1983

Abstract

Using a ${ }^{35} \mathrm{~S}$ label, rates of identity methyl-transfer reactions $\mathrm{XC}_{6} \mathrm{H}_{4}{ }^{*} \mathrm{SO}_{3}{ }^{-}+\mathrm{CH}_{3} \mathrm{O}_{3} \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{X} \rightarrow \mathrm{XC}_{6} \mathrm{H}_{4}{ }^{*} \mathrm{SO}_{3} \mathrm{CH}_{3}$ $+\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{SO}_{3}^{-}$in sulfolane have been measured. For all five cases, these identity rates fit the Hammett equation with the rather large ρ of +0.6 . Rates and equilibria for $\mathrm{XC}_{6} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{Me}+3,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{SO}_{3}^{-}$have been measured. The fit to the Marcus equation using averages of the experimental identity rates for the intrinsic rate is perfect, within experimental error. The absolute values of ρ for the forward and reverse reactions differ by an amount quantitatively consistent with the nonzero identity reaction ρ. The significance of the identity reaction $\rho>0$ is discussed.

Introduction

Rates of chemical reactions have been of interest for years, and it has long been recognized that, although thermodynamically unfavorable reactions are often very slow, there is no general correlation of rates with free-energy change. There are numerous examples of thermodynamically highly favorable reactions which are quite slow, such as the decomposition of TNT. After separating from these slow reactions those which mechanistically pass through highly unstable intermediates, many one-step slow reactions remain. A useful concept for such apparently anomalously slow reactions has been the Marcus equation, ${ }^{1}$ which expresses
(1) Marcus, R. A. J. Chem. Phys. 1956, 24, 966.
the kinetic barrier as the sum of an intrinsic barrier and the thermodynamic barrier (together with higher order terms). The Marcus equation was initially designed for electron-transfer reactions in solution but later found application to hydrogen-atom transfers, ${ }^{2}$ proton transfers, ${ }^{3}$ and group transfers, especially methyl-transfer reactions. ${ }^{4.5}$ eq 1. A form of the Marcus equation

$$
\begin{equation*}
\mathrm{Nu}_{i} \mathrm{Me}^{a}+\mathrm{Nu}_{j}^{b-1} \rightleftharpoons \mathrm{Nu}_{i}^{a-1}+\mathrm{MeNu}_{j}^{b} \tag{1}
\end{equation*}
$$

[^3]
[^0]: (6) Tamao, K.; Minato, A.; Miyake, N.; Matsuda, T.; Koso, Y.; Kumada, M. Chem. Lett. 1975, 133-136.
 (7) (a) Trippett, S. J. Chem. Soc. 1962, 2337-2340. (b) Bose, A. K.; Lal, B. Tetrahedron Lett. 1973, 3937-3940.
 (8) Hammerschmidt, E.; Bieber, W.; Vogtle, F. Chem. Ber. 1978, 111, 2445-2447.
 (9) Givens, R. S.; Wylie, P. L. Tetrahedron Lett. 1978, 865-868.
 (10) Jurd, L. J. Am. Chem. Soc. 1959, 81, 4606-4610.

[^1]: (11) Calo, V.; Ciminale, F.; Lopez, L.; Todesco, P. E. J. Chem. Soc. C 1971, 3652-3653.

[^2]: (13) Helgeson, R. C.; Weisman, G. R.; Toner, J. L.; Tarnowski, T. L.; Chao, Y.; Mayer, J. M.; Cram, D. J. J. Am. Chem. Soc. 1979, 101 , 4928-4941.
 (14) Space group $C c, a=12.693$ (4) $\AA, b=18.382$ (9) $\AA, c=16.009$ (7) $\AA, \beta=99.50(3)^{\circ}$ at $295 \mathrm{~K}, \boldsymbol{Z}=4$. Final $R=0.090$ for 3034 unique reflections with $I \geqslant \sigma(I)$.

[^3]: (2) Marcus, R. A. J. Phys. Chem. 1968, 72, 891.
 (3) A review including the application of the Marcus equation to proton transfers is: Kresge, A. J. Chem. Soc. Rev. 1973, 2, 475.
 (4) (a) Albery, W. J.; Kreevoy, M. M. Adv. Phys. Org. Chem. 1978, 16, 87. (b) Albery, W. J. Annu. Rev. Phys. Chem. 1980, 31, 227.

